Доказательства теорем об углах, связанных с окружностью. Задачи на доказательство геометрических фактов из гиа Применение навыка на практике

Предлагаю на этот раз устроить что-то вроде «доказательного марафона» по решению задач, которые предлагаются девятиклассникам в вариантах ГИА по математике. Связаны они с доказательством несложных, но в то же время очень полезных геометрических фактов. В статье намеренно не приведены подробные решения задач, лишь некоторые наброски и подсказки. Постарайтесь преодолеть эту марафонскую дистанцию самостоятельно, без ошибок и за один подход.

Задача 1. Докажите, что биссектрисы смежных углов перпендикулярны.

Угол α обозначен одной дугой, β — двумя

Доказательство: из рисунка видно, что α + α + β + β = 2α + 2β = 180 0 (развернутый угол), следовательно, α + β = 90 0 . Что и требовалось доказать.

Задача 2. Два отрезка AC и BD пересекаются в точке O , которая является серединой каждого из них. Докажите равенство треугольников ACD и CAB .

ABCD, конечно, будет параллелограммом, но в условии этого не дано

Доказательство: боковые треугольники равны по двум сторонам и углу между ними (BO = OD — по условию, AO = OC — по условию, ∠DOC = ∠AOB — вертикальные), то есть ∠ACD = ∠CAB , а поскольку они являются накрест лежащими при прямых AB , CD и секущей AC , то AB параллельна DC . Аналогично доказываем параллельность прямых BC и AD. Итак, ABCD — параллелограмм по определению. BC = AD , AB = CD (в параллелограмме противоположные стороны равны), AC — общая для треугольников ACD и CAB , поэтому они равны по трем сторонам. Что и требовалось доказать.

Задача 3. Докажите, что медиана, проведенная к основанию равнобедренного треугольника, является биссектрисой угла, противолежащего основанию, а также перпендикулярна основанию.

Углы, образованные медианой и основанием, назовем «нижними», медианой и боковыми сторонами — «верхними»

Доказательство: боковые треугольники на рисунке равны по трем сторонам, из чего следует равенство, во-первых, «верхних» углов (доказали, что биссектриса), во-вторых, «нижних» углов, в сумме как смежные дающих 180 0 , и равных поэтому по 90 0 каждый (доказали перпендикулярность). Что и требовалось доказать.

Задача 4. Докажите, что медианы, проведенные к боковым сторонам равнобедренного треугольника, равны.

Треугольники, образованные медианами, основанием и нижними половинами боковых сторон исходного треугольника, назовем «нижними»

Доказательство: углы при основании равнобедренного треугольника равны, поэтому «нижние» треугольники равны по двум сторонам и углу между ними, из чего следует равенство проведенных медиан. Что и требовалось доказать.

Задача 5. Докажите, что биссектрисы, проведенные из вершин основания равнобедренного треугольника, равны.

Все отмеченные на рисунке углы, конечно, равны, хоть и обозначены разными дугами

Доказательство: «нижний» треугольник равнобедренный, что следует из равенства углов при его основании, «боковые» треугольники равны по стороне (равные из доказанного выше частички биссектрис) и двум углам (первые равны по условию, вторые как вертикальные), поэтому оставшиеся частички биссектрис также равны друг другу, а значит равны и сами биссектрисы целиком. Что и требовалось доказать.

Задача 6. Докажите, что длина отрезка, соединяющего середины двух сторон треугольника, равна половине третьей стороны.

Чистенькие стороны назовем «основаниями», перечеркнутые — «боковыми сторонами»

Доказательство: боковые стороны маленького и большого треугольника на рисунке относятся как 1: 2, кроме того у них есть один общий угол, а значит они подобны по второму признаку с коэффициентом подобия 1: 2, поэтому и основания относятся как 1: 2. Что и требовалось доказать.

Задача 7. Докажите, что диагональ параллелограмма разбивает его на два равных треугольника.

Параллелограмм с диагональю, больше, пожалуй, добавить нечего

Доказательство: противоположные стороны параллелограмма равны, диагональ является общей стороной для этих треугольников, поэтому они равны по трем сторонам. Что и требовалось доказать.

Задача 8. Докажите, что медиана, прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.

Другими словами медиана проведена из вершины прямого угла

Доказательство: если вокруг данного прямоугольного треугольника описать окружность, то вписанный в эту окружность прямой угол треугольника будет описаться на полуокружность, поэтому гипотенуза будет диаметром этой окружности, а половинки гипотенузы и данная нам в задаче медиана — радиусами, итак, все они равны. Что и требовалось доказать.

Задача 9. Докажите, что отрезки касательных, проведенных к окружности из одной точки, равны.

Дополнительное построение: соединяем точку C с точкой O (мысленно)

Доказательство: углы B и A прямые (радиусы окружности, проведенные в точку качания, перпендикулярны касательным), значит прямоугольные треугольники AOC и BOC равны по гипотенузе (общая для них воображаемая нами сторона OC ) и катету (радиусы окружности OB = OA ), а значит AC = CB . Что и требовалось доказать.

Задача 10. Докажите, что диаметр, проходящий через середину хорды окружности, перпендикулярен ей.

Линия, соединяющая две точки на рисунке, является медианой треугольника, который мы рассмотрим

Доказательство: в равнобедренном треугольнике, образованном точками пересечения хорды с окружностью и центром этой окружности, изображенная медиана будет являться высотой, а значит диаметр, содержащий в себе эту высоту, перпендикулярен хорде. Что и требовалось доказать.

Задача 11. Докажите, что если две окружности имеют общую хорду, то прямая, проходящая через центр этих окружностей, перпендикулярна данной хорде.

Мысленно соединяем вместе все отмеченные на рисунке точки, точку пересечения горизонтали и вертикали назовем H

Доказательство: треугольники O 1 AO 2 и O 1 BO 2 равны по трем сторонам, следовательно, ∠HO 2 A = ∠HO 2 B , тогда треугольники HAO 2 и HBO 2 равны по двум сторонам и углу между ними, значит ∠AHO 2 = ∠BHO 2 , а в сумме два равных угла могут давать 180 0 только в том случае, если каждый из них равен по 90 0 . Что и требовалось доказать.

Задача 12. Докажите, что если в четырехугольник можно вписать окружность, то суммы длин его противоположных сторон равны.

Описанный четырехугольник. Назовем его ABCD. Пусть M, E, X и L — точки касания

Доказательство: используем теорему об отрезках касательных (задача 9). ВК = ВР , СР = СН , DX = DL и АТ = АК . Суммируем стороны АВ и CD : AB + CD = (AM + MB ) + (DX + XC ) = AL + BE + DL + CE = (AL + LD ) + (BE + EC ) = AD + BC. Что и требовалось доказать.

Задача 13. Докажите, что если около четырехугольника можно описать окружность, то суммы его противолежащих углов равны.

Описанная окружность

Доказательство: по теореме о вписанном угле сумма противолежащих углов этого четырехугольника равна 180 0 , поскольку вместе они опираются на полную окружность, градусная мера которой 360 0 . Что и требовалось доказать.

Задача 14. Докажите, что если около трапеции можно описать окружность, то трапеция равнобедренная.

Доказательство: сумма противолежащих углов четырехугольника, вписанного в окружность, равна α + β = 180 0 (см. задачу 13), сумма углов при боковой стороне трапеции также равна α + γ = 180 0 (эти углы являются односторонними при параллельных основаниях и секущей боковой стороне), из сравнения этих формул получаем, что β = γ , то есть углы при основании такой трапеции равны, и она действительно равнобедренная. Что и требовалось доказать.

Задача 15. В квадрате ABCD точки К и Е - середины сторон АВ и AD соответственно. Доказать, что КD перпендикулярна CE .

Инструкция

Если у треугольников ABC и DEF сторона AB равна стороне DE, а углы, прилегающие к стороне AB, равны углам, прилегающим к стороне DE, то эти треугольники считаются равными.

Если у треугольников ABC стороны AB, BC и CD равны соответствующим им сторонам треугольника DEF, то данные треугольники равны.

Обратите внимание

Если требуется доказать равенство между собой двух прямоугольных треугольников, то это можно сделать при помощи следующих признаков равенства прямоугольных треугольников:

По одному из катетов и гипотенузе;
- по двум известным катетам;
- по одному из катетов и прилежащему к нему острому углу;
- по гипотенузе и одному из острых углов.

Треугольники бывают остроугольными (если все углы его меньше 90 градусов), тупоугольными (если один из его углов больше 90 градусов), равносторонними и равнобедренными (если две стороны его равны).

Полезный совет

Помимо равенства треугольников между собой, эти же треугольники являются подобными. Подобными треугольниками считаются те, у которых углы равны между собой, а стороны одного треугольника пропорциональны сторонам другого. Стоит отметить, что если два треугольника подобны между собой, то это не гарантирует их равенство. При делении подобных сторон треугольников друг на друга рассчитывается так называемый коэффициент подобия. Также этот коэффициент можно получить путем деления площадей подобных треугольников.

Источники:

  • доказать равенство площадей треугольников

Два треугольника равны, если все элементы одного равны элементам другого. Но необязательно знать все размеры треугольников, чтобы сделать заключение об их равенстве. Достаточно иметь определенные наборы параметров заданных фигур.

Инструкция

Если известно, что две стороны одного треугольника равны другого и равны углы между этими сторонами, то рассматриваемые треугольники равны. Для доказательства совместите вершины равных углов двух фигур. Продолжайте наложение. Из полученной общей для двух треугольников точки направьте одну сторону угла наложенного треугольника по соответствующей стороне нижней фигуры. По условию, эти стороны в двух равны. Значит, концы отрезков совпадут. Следовательно, совместилась еще одна пара вершин в заданных треугольниках. Направления вторых сторон угла, с которого начато , совпадут вследствие равенства этих углов. А поскольку эти стороны равны, произойдет наложение последней вершины. Между двумя точками возможно проведение единственной прямой. Следовательно, третьи стороны в двух треугольниках совпадут. Вы получили две полностью совпавшие фигуры и доказанный первый признак равенства треугольников.

Если сторона и прилежащие к ней два угла в одном треугольнике равны соответствующим в другом треугольнике, то два эти треугольника равны. Для доказательства правильности этого утверждения наложите две фигуры, совместив вершины равных углов при равных сторонах. Вследствие равенства углов совпадет направление второй и третьей сторон и однозначно определится место их пересечения, т. е. третья вершина первого из треугольников обязательно совместится с аналогичной точкой второго. Второй признак равенства треугольников доказан.

С далеких времен и по сей день поиск признаков равенства фигур считается базовой задачей, которая является основой основ геометрии; сотни теорем доказываются с использованием признаков равенства. Умение доказывать равенство и подобие фигур — важная задача во всех сферах строительства.

Вконтакте

Применение навыка на практике

Предположим, что у нас есть фигура, начерченная на листе бумаги. При этом у нас есть линейка и транспортир, с помощью которых мы можем замерять длины отрезков и углы между ними. Как перенести на второй лист бумаги фигуру таких же размеров или увеличить ее масштаб в два раза.

Мы знаем, что треугольник — это фигура, состоящая из трех отрезков, называемых сторонами, образующими углы. Таким образом, существует шесть параметров — три стороны и три угла, которые определяют эту фигуру.

Однако, замерив величину всех трех сторон и углов, перенести данную фигуру на другую поверхность окажется непростой задачей. Кроме того, есть смысл задать вопрос: а не достаточно ли будет знания параметров двух сторон и одного угла, или всего лишь трех сторон.

Замерив длину двух сторон и между ними, затем отложим этот угол на новом листке бумаги, так мы сможем полностью воссоздать треугольник. Давайте разберемся, как это сделать, научимся доказывать признаки, по которым их можно считать одинаковыми, и определимся с тем, какое минимальное число параметров достаточно знать, чтобы получить уверенность в том, что треугольники одинаковы.

Важно! Фигуры называются одинаковыми, если отрезки, образующие их стороны, и углы равны между собой. Подобными называются те фигуры, у которых стороны и углы пропорциональны. Таким образом, равенство — это подобие с коэффициентом пропорциональности 1.

Какие существуют признаки равенства треугольников, дадим их определение:

  • первый признак равенства: два треугольника можно считать одинаковыми, если равны две их стороны, а также угол между ними.
  • второй признак равенства треугольников: два треугольника будут одинаковыми, если одинаковы два угла, а также соответствующая сторона между ними.
  • третий признак равенства треугольников: треугольники можно считать одинаковыми, когда все их стороны имеют равную длину.

Как доказать, что треугольники равны. Приведем доказательство равенства треугольников.

Доказательство 1 признака

Долгое время среди первых математиков данный признак считался аксиомой, однако, как оказалось, его можно геометрически доказать, опираясь на более базовые аксиомы.

Рассмотрим два треугольника — KMN и K 1 M 1 N 1 . Сторона КМ имеет такую же длину как и K 1 M 1 , а KN = K 1 N 1 . А угол MKN равен углам KMN и M 1 K 1 N 1 .

Если рассматривать KM и K 1 M 1, KN и K 1 N 1 как два луча, которые выходят из одной точки, то можно сказать, что между этими парами лучей одинаковые углы (это задано условием теоремы). Произведем параллельный перенос лучей K 1 M 1 и K 1 N 1 из точки K 1 в точку К. Вследствие этого переноса лучи K 1 M 1 и K 1 N 1 полностью совпадут. Отложим на луче K 1 M 1 отрезок длиной КМ, берущий свое начало в точке К. Поскольку по условию полученный отрезок и будет равен отрезку K 1 M 1 то точки М и M 1 совпадают. Аналогично и с отрезками KN и K 1 N 1 . Таким образом, перенося K 1 M 1 N 1 так, что точки K 1 и К совпадают, а две стороны накладываются, получаем полное совпадение и самих фигур.

Важно! В интернете встречаются доказательства равенства треугольников по двум сторонам и углу при помощи алгебраических и тригонометрических тождеств с численными значениями сторон и углов. Однако исторически и математически данная теорема была сформулирована задолго до алгебры и раньше, чем тригонометрия. Для доказательства этого признака теоремы использовать что-либо, кроме базовых аксиом, некорректно.

Доказательство 2 признака

Докажем второй признак равенства по двум углам и стороне, основываясь на первом.

Доказательство 2 признака

Рассмотрим KMN и PRS. К равен Р, N равен S. Сторона КN имеет такую же длину, как и РS. Необходимо доказать, что KMN и PRS — одинаковы.

Отразим точку М относительно луча КN. Полученную точку назовем L. При этом длина стороны КМ = КL. NKL равен PRS. KNL равен RSP.

Поскольку сумма углов равна 180 градусов, то KLN равен PRS, а значит PRS и KLN- одинаковые (подобные) по обеим сторонам и углу, согласно первому признаку.

Но, так как KNL равен KMN, то KMN и PRS — две одинаковые фигуры.

Доказательство 3 признака

Как установить, что треугольники равны. Это прямо вытекает из доказательства второго признака.

Длина KN = PS. Поскольку К = Р, N = S, KL=KM, при этом КN = KS, MN=ML, то:

Это означает, что обе фигуры являются подобными друг другу. Но так как их стороны одинаковы, то и они также равны.

Из признаков равенства и подобия вытекает множество следствий. Одно из них заключается в том, что для того, чтобы определить, равны два треугольника или нет, необходимо знать их свойства, одинаковы ли:

  • все три стороны;
  • обе стороны и угол между ними;
  • оба угла и сторона между ними.

Использование признака равенства треугольников для решения задач

Следствия первого признака

В ходе доказательства можно прийти к ряду интересных и полезных следствий.

  1. . Тот факт, что точка пересечения диагоналей параллелограмма делит их на две одинаковые части — следствие признаков равенства и вполне поддается доказательству.Стороны дополнительного треугольника (при зеркальном построении, как в доказательствах, которые мы выполняли) — сторонам главного (стороны параллелограмма).
  2. Если есть два прямоугольных треугольника, у которых одинаковые острые углы, то они подобны. Если при этом катет первого равен катету второго, то они равны. Понять это довольно легко — у любых прямоугольных треугольников есть прямой угол. Поэтому признаки равенства для них более просты.
  3. Два треугольника с прямыми углами, у которых два катета имеют одинаковую длину, можно считать одинаковыми. Это связано с тем, что между двумя катетами угол всегда равен 90 градусов. Поэтому по первому признаку (по двум сторонам и углу между ними) все треугольники с прямыми углами и одинаковыми катетами — равны.
  4. Если есть два прямоугольных треугольника, и у них один катет и гипотенуза равны, значит и треугольники одинаковы.

Докажем эту простую теорему.

Есть два прямоугольных треугольника. У одного стороны a, b, c, где с — гипотенуза; a, b — катеты. У второго стороны n, m, l, где l — гипотенуза; m, n — катеты.

По теореме Пифагора один из катетов равен:

;

.

Таким образом, если n = a, l = с (равенство катетов и гипотенуз), соответственно и вторые катеты будут равны. Фигуры, соответственно, будут равны по третьему признаку (по трем сторонам).

Отметим еще одно важное следствие. Если есть два равных треугольника, и они подобны с коэффициентом подобия k, то есть попарные отношения всех их сторон равны k, то отношение их площадей равно k2 .

Первый признак равенства треугольников. Видеоурок по геометрии 7 класс

Геометрия 7 Первый признак равенства треугольников

Вывод

Рассмотренная нами тема поможет любому ученику лучше разобраться в базовых геометрических понятиях и повысить свои навыки в интереснейшем мире математики.

Геометрия как отдельный предмет начинается у школьников в 7 классе. До этого времени они касаются геометрических задач достаточно лёгкой формы и в основном того, что можно рассмотреть на наглядных примерах: площади комнаты, земельного участка, длины и высоты стен в помещениях, плоских предметов и прочее. В нача ле изучения непосредственно геометрии появляются первые сложности, такие, например, как понятие прямой, так как потрогать руками эту прямую нет возможности. Что касается треугольников -это самый простой вид многоугольников, содержащий всего три угла и три стороны.

Вконтакте

Одноклассники

Тема треугольников одна из основных важных и больших тем школьной программы в геометрии 7−9 классов. Усвоив её хорошо, возможно решать очень сложные задачи. При этом можно изначально рассматривать совершенно другую геометрическую фигуру, а затем разделить её для удобства на подходящие треугольные части.

Для работы над доказательством равенства ∆ ABC и ∆A1B1C1 нужно хорошо усвоить признаки равенства фигур и уметь ими пользоваться. Перед изучением признаков необходимо научиться определять равенство сторон и углов простейших многоугольников.

Чтобы доказать, что углы треугольников равны, помогут следующие варианты:

  1. ∠ α = ∠ β исходя из построения фигур.
  2. Дано в условии задания.
  3. При двух параллельных прямых и наличии секущей могут образоваться как внутренние накрест лежащие, так и соответственные ∠ α = ∠ β.
  4. Прибавляя (вычитая) к (из) ∠ α = ∠ β равные углы.
  5. Всегда сходны вертикальные ∠ α и ∠ β
  6. Общий ∠ α, одновременно принадлежащий ∆ MNK и ∆ MNH .
  7. Биссектриса делит ∠ α на два равнозначных.
  8. Смежный с 90° - угол, равный исходному.
  9. Смежные равным углам равны.
  10. Высота образует два смежных 90° .
  11. В равнобедренном ∆ MNK при основании ∠ α = ∠ β.
  12. В равных ∆ MNK и ∆ SDH соответствующие ∠ α = ∠ β.
  13. Доказанное ранее равенство ∆ MNK и ∆ SDH .

Это интересно: Как найти периметр треугольника.

3 признака равенства треугольников

Доказательство равенства ∆ ABC и ∆A1B1C1 очень удобно производить, опираясь на основные признаки тождественности этих простейших многоугольников. Существует три таких признака. Они являются очень важными при решении многих геометрических задач. Стоит рассмотреть каждый.

Перечисленные выше признаки являются теоремами и доказываются методом наложения одной фигуры на другую, соединения вершин соответственных углов и начала лучей. Доказательства равенства треугольников в 7 классе описаны в очень доступной форме, но сложны в изучении школьниками на практике, так как содержат большое количество элементов, обозначенных заглавными латинскими буквами. Это не совсем привычно для многих учеников на момент начала изучения предмета. Подростки путаются в названиях сторон, лучей, углов.

Чуть позже появляется ещё одна важная тема «Подобие треугольников». Само определение «подобие» в геометрии означает схожесть формы при различии размеров. Для примера можно взять два квадрата, первый со стороной 4 см, а второй 10 см. Эти виды четырёхугольников будут похожи и, одновременно, иметь отличие, поскольку второй будет больше, причём каждая сторона увеличена в одинаковое количество раз.

В рассмотрении темы подобия также приводятся 3 признака:

  • Первый — о двух соответственно равных углах двух рассматриваемых треугольных фигур.
  • Второй — об угле и образующих его сторонах ∆ MNK , которые равны соответственным элементам ∆ SDH .
  • Третий — указывает на пропорциональность всех соответственных сторон двух нужных фигур.

Как же доказать, что треугольники подобны? Достаточно воспользоваться одним из выше перечисленных признаков и грамотно описать весь процесс доказательства задания. Тема подобия ∆ MNK и ∆ SDH проще воспринимается школьниками исходя из того, что к моменту её изучения ученики уже свободно пользуются обозначениями элементов в геометрических построениях, не путаются в огромном количестве названий и умеют читать чертежи.

Завершая прохождение обширной темы треугольных геометрических фигур, учащиеся уже в совершенстве должны знать, как доказать равенство ∆ MNK = ∆ SDH по двум сторонам, установить равны два треугольника или нет. Учитывая, что многоугольник, имеющий ровно три угла - это одна из важнейших геометрических фигур, к усвоению материала следует подойти серьёзно, уделяя особое внимание даже мелким фактам теории.